Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Zootaxa ; 5277(3): 443-489, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37518309

ABSTRACT

Costa do Descobrimento is located in southern Bahia, Brazil, and only 22 species of sponges (Porifera) were known from the area until now, despite its important reef formations. In the present study, we report a checklist of the sponges of Costa do Descobrimento and their distribution in the studied reefs, with several species illustrated in life. We also describe nine new sponge records for this region, some of which are new records for Brazil, or new records of species previously only poorly known. We present alpha and beta diversity indices and compare the sponge assemblage of the sampled locations. Four reefs were considered: two fringing reefs (Arraial D'Ajuda-AA and Coroa Vermelha / Mutá-CVM) and two offshore Municipal Marine Park "Parque Municipal Marinho- (P.M.M. Coroa Alta-CA and P.M.M. Recife de Fora-RF). A total of 229 specimens were collected (224 Demospongiae, 2 Homoscleromorpha and 3 Calcarea). These were classified in 101 morphotypes. Studied materials included representatives of 15 orders, 34 families and 48 genera. The richest orders are Haplosclerida (29 spp.), Poecilosclerida (15 spp.) and Tetractinellida (11 spp.). The richest families were Chalinidae (24 spp.), Clionaidae (7 spp.) and Mycalidae and Suberitidae (6 spp. each). The richest genus is, by far, Haliclona (20 spp.). Only 13 species were shared among all four reefs surveyed, namely Amphimedon viridis, Cinachyrella alloclada, C. apion, Cladocroce caelum, Cliona varians, Dysidea robusta, Mycale (Naviculina) diversisigmata, Niphates erecta, Spirastrella hartmani, Tedania (Tedania) ignis, Terpios fugax, Tethya bitylastra and T. maza. The reefs with the highest richness were CA and CVM, and the lowest richness was observed in RF. The most similar reefs in terms of species composition were CA and CVM, while AA and RF were more dissimilar to the previous reefs, but also from each other. While the difference among CA, CVM and AA was mainly explained by species turnover, RF differed from the previous based on its lower richness (nestedness component). Even though CA and CVM were the richest reefs, AA presented the highest number of exclusive species, highlighting the uniqueness of this reef, and urging the inclusion of local beachrock fringing reefs in a more holistic conservation strategy at Costa do Descobrimento.

2.
Sci Total Environ ; 879: 163256, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37011689

ABSTRACT

Sponges from South America and Antarctica are evolutionarily closely related. Specific symbiont signatures that could differentiate these two geographic regions are unknown. This study aimed to investigate the microbiome diversity of sponges from South America and Antarctica. In total 71 sponge specimens were analyzed (Antarctica: N = 59, 13 different species; South America: N = 12, 6 different species). Illumina 16S rRNA sequences were generated (2.88 million sequences; 40K ± 29K/sample). The most abundant symbionts were heterotrophic (94.8 %) and belonged mainly to Proteobacteria and Bacteroidota. EC94 was the most abundant symbiont and dominated the microbiome of some species (70-87 %), comprising at least 10 phylogroups. Each of the EC94 phylogroups was specific to one genus or species of sponge. Furthermore, South America sponges had higher abundance of photosynthetic microorganisms (2.3 %) and sponges from Antarctica, the highest abundance of chemosynthetic (5.5 %). Sponge symbionts may contribute to the function of their hosts. The unique features from each of these two regions (e.g., light, temperature, and nutrients) possibly stimulate distinct microbiome diversity from sponges biogeographically distributed across continents.


Subject(s)
Microbiota , Photosynthesis , RNA, Ribosomal, 16S/genetics , Antarctic Regions , Bacteroidetes/genetics , Phylogeny
3.
Biomedicines ; 11(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36831091

ABSTRACT

In mice, oral Toxoplasma gondii infection induces severe ileitis. The aim of the present study was to investigate the impact of the P2X7 receptor (P2X7) on the inflammatory response to T. gondii-induced ileitis. Cysts of the ME49 strain of T. gondii were used to induce ileitis. The infected mice were euthanized on day 8 and ileal tissue and peripheral blood were collected for histopathological and immunohistochemical analyses. Ileal contractility, inflammatory mediators, inflammasome activation, quantitative PCR analysis of gene expression, and fecal microbiota were assessed using appropriate techniques, respectively. The infected P2X7-/- mice had greater disease severity, parasitic burden, liver damage, and intestinal contractility than the infected wild-type (WT) mice. Infection increased serum IL-6 and IFN-γ and tissue caspase-1 but not NLRP3 in P2X7-/- mice compared to WT mice. Bacteroidaceae, Rikenellaceae, and Rhodospirillales increased while Muribaculaceae and Lactobacillaceae decreased in the infected WT and P2X7-/- mice. Bacteroidia and Tannerellaceae increased in the P2X7-/- mice with ileitis. By contrast, Clostridiales and Mollicutes were absent in the P2X7-/- mice but increased in the WT mice. P2X7 protects mice against T. gondii infection by activating the inflammasome and regulating the local and systemic immune responses. Specific gut bacterial populations modulated by P2X7 determine disease severity.

4.
Sci Total Environ ; 865: 161278, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36592904

ABSTRACT

The rupture of the Córrego do Feijão dam in Brumadinho (January 25, 2019) caused serious damage to the Paraopeba River and compromised the quality of its waters for human consumption. However, the possible effects of the dam collapse on the river microbiome and its antibiotic resistance profiles are unknown. The present study aims to analyse the possible shifts in microbial diversity and enhancement of antibiotic resistance in the Paraopeba River. To this end, two sampling campaigns (February and May 2019) were performed to obtain water across the entire Paraopeba River (eight sampling locations: Moeda, Brumadinho, Igarapé, Juatuba, Varginha, Angueretá, Retiro Baixo and Três Marias; ~464 km). This sampling scheme enabled determining the effects of the disaster on the river microbiome. Total DNA and microbial isolation were performed with these water samples. The 16S rRNA-based microbiome analyses (n = 24; 2.05 million 16S rRNA reads) showed changes in microbial diversity immediately after the disaster with the presence of metal-indicating bacteria (Acinetobacter, Bacillus, Novosphingobium, and Sediminibacterium). Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) identification of bacterial isolates (n = 170) also disclosed possible indicators of faecal contamination across the Paraopeba (Cloacibacterium, Bacteroides, Feaecalibacterium, Bifidobacterium, Citrobacter, Enterobacter, Enterococcus and Escherichia). Antibiotic resistance increased significantly to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanate, ceftriaxone, and cefalotin among isolates obtained in May after the disaster. The effects of toxic mud on microbiomes were felt at all points sampled up to Anguereta. The ore mud may have exacerbated the growth of different antibiotic-resistant, metal-resistant, and faecal-indicating bacteria in the Paraopeba River.


Subject(s)
Microbiota , Structure Collapse , Water Pollutants, Chemical , Humans , Rivers/microbiology , RNA, Ribosomal, 16S/genetics , Brazil , Bacteria/genetics , Water Pollutants, Chemical/analysis , Drug Resistance, Microbial , Water/analysis , Ampicillin/analysis , Environmental Monitoring
5.
Sci Total Environ ; 847: 157474, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35868367

ABSTRACT

Sponges have co-evolved with microbes for over 400 myr. Previous studies have demonstrated that sponges can be classified according to the abundance of microbes in their tissues as Low Microbial Abundance (LMA) and High Microbial Abundance (HMA). While LMA sponges rely mainly on water column microbes, HMA appear to rely much more on symbiotic fermentative and autotrophic microbes maintained in their tissues. However, it is unclear if this pattern holds when comparing different species of tropical sponges under extreme nutrient conditions and sediment loads in the water column, such as the Great Amazon Reef System (GARS), which covers an area of ~56,000 km2 off the Amazon River mouth. Sponges are the major GARS benthic components. However, these sponges' microbiome across the GARS is still unknown. Here, we investigated water quality, isotopic values (δ13C and δ15N), metagenomic and lipidomic profiles of sponges obtained from different sectors throughout the GARS. >180 million shotgun metagenomic reads were annotated, covering 22 sponge species. Isotopic and lipidomic analyses suggested LMA sponges rely on the Amazon River Plume for nutrition. HMA sponges (N = 15) had higher Roseiflexus and Nitrospira abundance, whereas LMA sponges (N = 7) had higher Prochlorococcus and Pelagibacter abundance. Functional data revealed that the LMA sponge microbiomes had greater number of sequences related to phages and prophages as well as electron transport and photophosphorylation which may be related to photosynthetic processes associated with the Prochlorococcus and Synechococcus found in the LMA. The higher phages abundance in LMA sponges could be related to these holobionts' reduced defense towards phage infection. Meanwhile, HMA sponge microbiomes had higher Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR abundance, which may be involved in defense against phage infection. This study sheds light on the nutrient fluxes and microbes from the Amazon River plume into the sponge holobionts.


Subject(s)
Porifera , Rivers , Animals , Nutrients , Phylogeny , RNA, Ribosomal, 16S
6.
Int J Mol Sci ; 23(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35563010

ABSTRACT

Background: Given the role of the P2X7 receptor (P2X7R) in inflammatory bowel diseases (IBD), we investigated its role in the development and progression of colitis-associated colorectal cancer (CA-CRC). Methods: CA-CRC was induced in P2X7R+/+ and P2X7R-/- mice with azoxymethane (AOM) combined with dextran sodium sulfate (DSS). In a therapeutic protocol, P2X7R+/+ mice were treated with a P2X7R-selective inhibitor (A740003). Mice were evaluated with follow-up video endoscopy with endoluminal ultrasound biomicroscopy. Colon tissue was analyzed for histological changes, densities of immune cells, expression of transcription factors, cytokines, genes, DNA methylation, and microbiome composition of fecal samples by sequencing for 16S rRNA. Results: The P2X7R+/+ mice displayed more ulcers, tumors, and greater wall thickness, than the P2X7R-/- and the P2X7R+/+ mice treated with A740003. The P2X7R+/+ mice showed increased accumulation of immune cells, production of proinflammatory cytokines, activation of intracellular signaling pathways, and upregulation of NLRP3 and NLRP12 genes, stabilized after the P2X7R-blockade. Microbial changes were observed in the P2X7R-/- and P2X7R+/+-induced mice, partially reversed by the A740003 treatment. Conclusions: Regulatory mechanisms activated downstream of the P2X7R in combination with signals from a dysbiotic microbiota result in the activation of intracellular signaling pathways and the inflammasome, amplifying the inflammatory response and promoting CA-CRC development.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Gastrointestinal Microbiome , Inflammasomes , Receptors, Purinergic P2X7 , Animals , Carcinogenesis/genetics , Cell Transformation, Neoplastic/metabolism , Colonic Neoplasms/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cytokines/metabolism , Dextran Sulfate/pharmacology , Disease Models, Animal , Gastrointestinal Microbiome/physiology , Inflammasomes/genetics , Inflammasomes/metabolism , Inflammation/genetics , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , RNA, Ribosomal, 16S , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism
7.
Sci Total Environ ; 835: 155145, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35429557

ABSTRACT

Sponges are among the earliest lineages of metazoans, with first fossil records dated back to 890 million years ago. All sponge species present associations with microorganisms to some extension, which influence sponges' survival and adaptation. Sponge species can be divided into two categories, Low Microbial Abundance and High Microbial Abundance, depending on the abundance of the microbial community that they host. Monanchora arbuscula (a Low Microbial Abundance sponge species) and Xestospongia muta (a High Microbial Abundance sponge species) are sponges with widespread distribution in the Tropical Western Atlantic. Despite previous studies on the major features of these species, little is known whether M. arcuscula and X. muta prokaryotic communities are stable across vast geographic regions. We obtained a total of ~9.26 million 16S rRNA gene Illumina sequences for M. arbuscula samples collected at seven locations and for X. muta samples collected at three locations, corresponding to five ecoregions of the Caribbean and the Southwestern Atlantic (N = 105, 39 from M. arcuscula and 66 from X. muta). These samples reflected different ecological strategies for prokaryotic communities assembly, since the core prokaryotic communities of M. arbuscula are more heterotrophic and shared with different sources (corals, sponges, seawater, sediments), while X. muta has more significant photosynthetic prokaryotic communities, mainly outsourced from other sponges. Results of M. arbuscula and X. muta prokaryotic communities analysis demonstrate that both sponge species have core prokaryotic communities stable across a vast geographic area (> 8000 km), and the world's most notable coastal marine biogeographic filter, the Amazon River Mouth, in spite of the significant differences found among transient prokaryotic communities of both sponge species.


Subject(s)
Anthozoa , Microbiota , Xestospongia , Animals , Biodiversity , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater , Xestospongia/genetics
8.
Sci Adv ; 2(4): e1501252, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27152336

ABSTRACT

Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 × 10(6)-km(2) plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume's eastward retroflection, conditions the existence of this extensive (~9500 km(2)) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth-ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes.


Subject(s)
Anthozoa/chemistry , Coral Reefs , Ecosystem , Animals , Geologic Sediments/chemistry , Porifera , Rivers , South America
9.
Zootaxa ; 4034(1): 161-81, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26624436

ABSTRACT

Comprising 56 species, Timea Gray, 1867 belongs to the monotypic family Timeidae Gray, 1867, with both family and genus characterized by the presence of (sub)tylostyles as megascleres, and euasters as microscleres. Two new species are described from the coast of Rio de Janeiro state, Timea berlincki sp. nov. and Timea clandestina sp. nov., the first of which also from São Paulo state (southeastern Brazil). Both are compared to other species based on their morphological and skeletal characters. Records of all species of the genus worldwide are tabulated and discussed, and an identification key for Tropical western Atlantic species of Timea is offered.


Subject(s)
Porifera/classification , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , Brazil , Organ Size , Porifera/anatomy & histology , Porifera/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...